Graphs with distance guarantees
نویسنده
چکیده
One goal in network design is the construction of sparse networks that guarantee short distances with respect to some given distance requirements. By this, it can be guaranteed, for example, that delays that are incurred by link faults are bounded. An appropriate graph-theoretic model for this is the concept of k–spanners: Given a graph G, a k–spanner of G is a spanning subgraph S, such that the distance between any two vertices in S is at most k times longer than the distance in G. Research in this area has mainly concentrated on two aspects: minimum k–spanners, i.e., k–spanners that contain the fewest edges among all k–spanners, and tree k–spanners, i.e., k–spanners that are trees. In this thesis, we use k–spanners to model further desirable properties from network design (such as reliability) within a graph-theoretic framework. Our main emphasis is on sparse graphs that guarantee short distances, and we are interested in simple structures and fault-tolerance. Basically, our research comprises two major parts: In the first part, we use k–spanners as a means of analyzing a given graph: We are given a graph and the problem is to decide whether it contains some particular form of k–spanner. Often, k–spanners are difficult to find, and most problems in this area are NP-hard. Moreover, both the concepts of minimum or tree k–spanners exhibit serious drawbacks with respect to typical applications in network design. To overcome these difficulties, we propose three approaches stemming from different thematic contexts: • k–spanners within the context of planarity; • k–spanners that are sparse, simply structured, and fault-tolerant; • generalized k–spanners using auxiliary vertices. To summarize, our results in this first part of the thesis indicate even more that the problem of finding k–spanners in their different shaping is difficult, and only some special cases can be solved efficiently. In contrast, in the second part of this thesis, we use k–spanners to construct graphs from scratch, subject to some given requirements. We introduce graph-theoretic models for graphs that guarantee constant delays even if a multiple number of edges fail. In particular, we consider two cases: an unlimited and a limited number of edge faults. Though we cannot hope for finding efficient characterizations for both graph classes, we give characterizations and examine some popular graph classes, graph operations and network topologies with respect to the given requirements. Deutsche Zusammenfassung Ein wichtiges Teilproblem beim Entwurf von Netzwerken ist das Finden von dünnen Netzwerken, in denen die Abstände zwischen je zwei Knoten nicht zu groß bzgl. vorgegebener Entfernungsbedingungen werden. Auf diese Weise kann beispielsweise garantiert werden, dass Verzögerungen durch den Wegfall von Verbindungen unter Kontrolle gehalten werden. Ein geeignetes graphentheoretisches Modell dafür sind k-Spanner : Ein aufspannender Teilgraph S heißt k–Spanner eines Graphen G für ein k ≥ 1, falls die Distanz in S für jedes Knotenpaar höchstens das k–fache der Distanz in G ist. Die Forschung im Bereich der k–Spanner hat sich meist auf das Studium von minimalen k–Spannern (also k–Spanner mit der kleinstmöglichen Kantenzahl) oder k– Baumspannern (also k–Spanner, die Baumstruktur haben) konzentriert. In dieser Dissertation verwenden wir das Konzept der k–Spanner, um zusätzliche wünschenswerte Eigenschaften (wie zum Beispiel Zuverlässigkeit) graphentheoretisch zu fassen. Wir beschäftigen uns dabei hauptsächlich mit dünnen Graphen, die kurze Distanzen garantieren und dabei eine möglichst einfache Struktur besitzen beziehungsweise fehlertolerant sind. Die Ergebnisse lassen sich im wesentlichen in zwei Hauptteile untergliedern. Im ersten Teil verwenden wir k–Spanner, um einen vorgegebenen Graphen zu analysieren, indem wir untersuchen, ob er eine bestimmte Form von k–Spanner enthält. Für die bislang untersuchten, oben erwähnten Varianten hat sich dieses Problem jedoch meist als schwierig beziehungsweise NP–schwer herausgestellt. Außerdem hat sowohl das Konzept der minimalen k–Spanner als auch das der k–Baumspanner Nachteile in Bezug auf netzwerktypische Anforderungen. Um dies zu überwinden, betrachten wir drei Modelle aus verschiedenen thematischen Kontexten: • k–Spanner und Planarität; • dünne, einfach strukturierte k–Spanner, die fehlertolerant sind; • verallgemeinerte k–Spanner, die Hilfsknoten berücksichtigen. Die Ergebnisse belegen, dass Probleme im Bereich der k–Spanner schwierig sind. Oft können nur Teilprobleme effizient gelöst werden. Der zweite Teil dieser Dissertation verfolgt ein artverwandtes Problem, jedoch diesmal aus der Perspektive der Graph-Konstruktion: Unser Ziel ist es, Graphen zu konstruieren, die höchstens konstante Verzögerungen garantieren, selbst wenn beliebige Kanten des Graphen ausfallen. Es zeigt sich, dass das allgemeine Problem der Erkennung der jeweiligen Graphklassen NP–schwer ist. Wir geben jedoch Charakterisierungen an und beschreiben, wie sich einige populäre Graphklassen, Graphoperationen und NetzwerkTopologien bezüglich der gegebenen Eigenschaften verhalten.
منابع مشابه
On reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملGeneralized Degree Distance of Strong Product of Graphs
In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product of a connected and the complete multipartite graph with partite sets of sizes m0, m1, . . . , mr&minus1 are obtained. Using the results obtained here, the formulae for the degree distance and reciprocal degree distance of the closed and open fence graphs are co...
متن کاملD-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کاملDistance-Balanced Closure of Some Graphs
In this paper we prove that any distance-balanced graph $G$ with $Delta(G)geq |V(G)|-3$ is regular. Also we define notion of distance-balanced closure of a graph and we find distance-balanced closures of trees $T$ with $Delta(T)geq |V(T)|-3$.
متن کاملA Family of Tractable Graph Distances
Important data mining problems such as nearestneighbor search and clustering admit theoretical guarantees when restricted to objects embedded in a metric space. Graphs are ubiquitous, and clustering and classification over graphs arise in diverse areas, including, e.g., image processing and social networks. Unfortunately, popular distance scores used in these applications, that scale over large...
متن کاملRemarks on Distance-Balanced Graphs
Distance-balanced graphs are introduced as graphs in which every edge uv has the following property: the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. Basic properties of these graphs are obtained. In this paper, we study the conditions under which some graph operations produce a distance-balanced graph.
متن کامل